Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
continuous_basis_representations [2021/03/12 20:36] – [2.vi.3 Connecting the Position and Momentum Representations] admincontinuous_basis_representations [2021/03/12 21:25] (current) – [2.vi.3 Connecting the Position and Momentum Representations] admin
Line 138: Line 138:
   & = \sand{x}{\hat{I}}{\psi} \\   & = \sand{x}{\hat{I}}{\psi} \\
   & = \int_{-\infty}^{+\infty} \D p\, \braket{x}{p}\braket{p}{\psi} \\   & = \int_{-\infty}^{+\infty} \D p\, \braket{x}{p}\braket{p}{\psi} \\
-  & = \frac{1}{\sqrt{2\pi\hbar}} int_{-\infty}^{+\infty} \D p\, e^{ipx/\hbar} \Psi(p).+  & = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D p\, e^{ipx/\hbar} \Psi(p).
 \end{align*} \end{align*}
 In other words, the position space wavefunction is the inverse Fourier transform of the momentum space wavefunction. In other words, the position space wavefunction is the inverse Fourier transform of the momentum space wavefunction.
-\[\boxed{\psi(x) =\frac{1}{\sqrt{2\pi\hbar}} int_{-\infty}^{+\infty} \D p\, e^{ipx/\hbar} \Psi(p)}.\]+\[\boxed{\psi(x) =\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D p\, e^{ipx/\hbar} \Psi(p)}.\]
 In three dimensions, we will have In three dimensions, we will have
-\[\boxed{\psi(\vec{r}) =\frac{1}{\left ( 2\pi\hbar \right )^{3/2}} int_{\mathbb{R}^3} \D^3 \vec{p}\, e^{i\vec{p}\cdot \vec{r}/\hbar} \Psi(\vec{p})}.\]+\[\boxed{\psi(\vec{r}) =\frac{1}{\left ( 2\pi\hbar \right )^{3/2}} \int_{\mathbb{R}^3} \D^3 \vec{p}\, e^{i\vec{p}\cdot \vec{r}/\hbar} \Psi(\vec{p})}.\]
 Similarly, the momentum space wavefunction is given by Similarly, the momentum space wavefunction is given by
 \begin{align*} \begin{align*}
Line 149: Line 149:
   & = \sand{p}{\hat{I}}{\psi} \\   & = \sand{p}{\hat{I}}{\psi} \\
   & = \int_{-\infty}^{+\infty} \D x\, \braket{p}{x}\braket{x}{\psi} \\   & = \int_{-\infty}^{+\infty} \D x\, \braket{p}{x}\braket{x}{\psi} \\
-  & = \frac{1}{\sqrt{2\pi\hbar}} int_{-\infty}^{+\infty} \D x\, e^{-ipx/\hbar} \psi(x),+  & = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D x\, e^{-ipx/\hbar} \psi(x),
 \end{align*} \end{align*}
 which is the Fourier transform of the position space wavefunction. which is the Fourier transform of the position space wavefunction.
-\[\boxed{\Psi(p) =\frac{1}{\sqrt{2\pi\hbar}} int_{-\infty}^{+\infty} \D x\, e^{-ipx/\hbar} \psi(x)},\]+\[\boxed{\Psi(p) =\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D x\, e^{-ipx/\hbar} \psi(x)},\]
 and in three dimensions this will be and in three dimensions this will be
-\[\boxed{\Psi(\vec{p}) =\frac{1}{\left ( 2\pi\hbar \right )^{3/2}} int_{\mathbb{R}^3} \D^3 \vec{r}\, e^{-i\vec{p}\cdot \vec{r}/\hbar} \psi(\vec{r})}.\]+\[\boxed{\Psi(\vec{p}) =\frac{1}{\left ( 2\pi\hbar \right )^{3/2}} \int_{\mathbb{R}^3} \D^3 \vec{r}\, e^{-i\vec{p}\cdot \vec{r}/\hbar} \psi(\vec{r})}.\] 
 + 
 +====== 2.vi.4 The Momentum Operator in the Position Basis ====== 
 + 
 +We know that, in the momentum basis $\hat{p} \ket{p} = p \ket{p}$, so the matrix elements of the momentum operator in the momentum basis are $\sand{p}{\hat{p}}{p'} = p \delta(p-p')$.  This allows us to compute the action of $\hat{p}$ on any ket $\ket{\psi}$ by working in the momentum basis.  If $\ket{\psi'} = \hat{p} \ket{\psi}$ then 
 +\begin{align*} 
 +\Psi'(p) & = \braket{p}{\psi'} \\ 
 +& = \sand{p}{\hat{p}}{\psi} \\ 
 +& = \sand{p}{\hat{p}\hat{I}}{\psi} \\ 
 +& = \int_{-\infty}^{+\infty} \D p' \, \sand{p}{\hat{p}}{p'}\braket{p'}{\psi} \\ 
 +& = \int_{-\infty}^{+\infty} \D p' \, p\delta(p-p')\Psi(p') \\ 
 +& = p\Psi(p). 
 +\end{align*} 
 +In other words, we just multiply the momentum space wavefunction by $p$. 
 + 
 +However, what if we want to know how $\hat{p}$ acts on the position space wavefunction $\psi(x)$.  Recall, that the operator $\hat{\frac{\D}{\D x}}$ is defined through its action in the position basis via  
 +\[\hat{\frac{\D}{\D x}}\ket{\psi} = \int_{-\infty}^{+\infty} \D x\, \frac{\D \psi}{\D x} \ket{x}\] 
 +We can start by noticing that 
 +\[\frac{\D}{\D x} \left ( e^{ipx/\hbar} \right ) = \frac{ip}{\hbar}e^{ipx/\hbar},\] 
 +so that 
 +\[-i\hbar \frac{\D}{\D x} \left ( e^{ipx/\hbar} \right ) = p e^{ipx/\hbar}.\] 
 +Therefore, since we want $\hat{p}\ket{p} = p\ket{p}$ and we know that 
 +\[\ket{p} = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D p\,e^{ipx/\hbar} \ket{x},\] 
 +we have 
 +\[\hat{p}\ket{p} = -\i\hbar \hat{\frac{\D}{\D x}} \ket{p}.\] 
 +However, since $\ket{p}$ is a complete orthonormal basis, this implies that 
 +\[\boxed{\hat{p}} = -i\hbar \hat{\frac{\D}{\D x}},\] 
 +which means that, if $\ket{\psi'} = \hat{p}\ket{\psi}$ then 
 +\begin{align} 
 +\psi'(x) &  = \sand{x}{\hat{p}}{\psi} \\ 
 +& = -i\hbar \sand{x}{\hat{\frac{\D}{\D x}}}{\psi} \\ 
 +& = -i\hbar \int_{-\infty}^{+\infty} \D x'\, \frac{\D \psi}{\D x} \braket{x}{x' \\ 
 +& = -i\hbar \int_{-\infty}^{+\infty} \D x'\, \frac{\D \psi}{\D x} \delta(x-x') \\ 
 +& = -i\hbar \frac{\D \psi}{\D x}, 
 +\end{align} 
 +i.e. we act with -i\hbar \frac{\D}{\D x} on the position space wavefunction $\psi(x)$. 
 + 
 +Note that it is common to use the sloppy notation 
 +\[\hat{p} \psi(x) = -i\hbar \frac{\D \psi}{\D x},\] 
 +which really means 
 +\[\sand{x}{\hat{p}}{\psi} = -i\hbar \frac{\D \braket{x}{\psi}}{\D x},\] 
 +but this causes no confusion in situations where we are //only// working in the position basis, which is often the case. 
 + 
 +In three dimensions, we will have the generalization 
 +\[\boxed{\hat{\vec{p}} = -i\hbar \hat{\vec{\nabla}}},\] 
 +where 
 +\[\vec{\nabla} = \left ( \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right ).\] 
 + 
 +====== 2.vi. 5 The Hamiltonian Operator in the Position Basis ====== 
 +