Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
continuous_basis_representations [2021/03/12 20:13] admincontinuous_basis_representations [2021/03/12 21:25] (current) – [2.vi.3 Connecting the Position and Momentum Representations] admin
Line 21: Line 21:
 & = \int_{-\infty}^{+\infty}\D k\, f(k)^*\bra{\chi_k}, & = \int_{-\infty}^{+\infty}\D k\, f(k)^*\bra{\chi_k},
 \end{align*} \end{align*}
-where we can think of $f^*(k)$ as the components of a "row vector" with a continuous index.+where we can think of $f(k)^*$ as the components of a "row vector" with a continuous index.
  
 As another example, we can calculate an inner product in a particular basis via: As another example, we can calculate an inner product in a particular basis via:
Line 28: Line 28:
 & = \int_{-\infty}^{+\infty} \D k\, \braket{\phi}{\chi_k} \braket{\chi_k}{\psi} \\ & = \int_{-\infty}^{+\infty} \D k\, \braket{\phi}{\chi_k} \braket{\chi_k}{\psi} \\
 & = \int_{-\infty}^{+\infty} \D k\, \braket{\chi_k}{\phi}^* \braket{\chi_k}{\psi} \\ & = \int_{-\infty}^{+\infty} \D k\, \braket{\chi_k}{\phi}^* \braket{\chi_k}{\psi} \\
-& = \int_{-\infty}^{+\infty} \D k\, g^*(k) f(k),+& = \int_{-\infty}^{+\infty} \D k\, g(k)^* f(k),
 \end{align*} \end{align*}
 where $g(k)$ are the components of $\ket{\phi}$ in the $\ket{\chi_k}$ basis, i.e. $\ket{\phi} = \int_{-\infty}^{+\infty} \D k\, g(k) \ket{\chi_k}$. where $g(k)$ are the components of $\ket{\phi}$ in the $\ket{\chi_k}$ basis, i.e. $\ket{\phi} = \int_{-\infty}^{+\infty} \D k\, g(k) \ket{\chi_k}$.
Line 41: Line 41:
 where we think of $A_{kk'} = \sand{\chi_k}{\hat{A}}{\chi_{k'}}$ as the components of a "matrix" with a continuous infinity of rows and columns. where we think of $A_{kk'} = \sand{\chi_k}{\hat{A}}{\chi_{k'}}$ as the components of a "matrix" with a continuous infinity of rows and columns.
  
-x====== 2.vi.1 The Position Representation ======+====== 2.vi.1 The Position Representation ======
  
 Just as in the discrete case, there are an infinite number of orthonormal bases that we could use.  However, for most calculations, it is convenient to use just two: the position basis and the momentum basis. Just as in the discrete case, there are an infinite number of orthonormal bases that we could use.  However, for most calculations, it is convenient to use just two: the position basis and the momentum basis.
Line 61: Line 61:
 \[\hat{\vec{r}} \ket{\vec{r}} = \vec{r}\ket{\vec{r}},\] \[\hat{\vec{r}} \ket{\vec{r}} = \vec{r}\ket{\vec{r}},\]
 which is understood to mean which is understood to mean
-\[\left ( \begin{array}{c} \hat{x}\ket{\vec{r}} \\ \hat{y}\ket{\vec{r}} \\ \hat{z}\ket{\vec{r}} \end{array}\right ) = \left ( \begin{array}{c} x\ket{\vec{r}} \\ \y\ket{\vec{r}} \\ z\ket{\vec{r}} \end{array}\right ).\]+\[\left ( \begin{array}{c} \hat{x}\ket{\vec{r}} \\ \hat{y}\ket{\vec{r}} \\ \hat{z}\ket{\vec{r}} \end{array}\right ) = \left ( \begin{array}{c} x\ket{\vec{r}} \\ y\ket{\vec{r}} \\ z\ket{\vec{r}} \end{array}\right ).\]
  
 The orthonormality relations for the position basis are The orthonormality relations for the position basis are
Line 76: Line 76:
 \[\ket{\psi} = \hat{I}\ket{\psi} = \int_{-\infty}^{+\infty}\D x\, \ket{x}\braket{x}{\psi} = \int_{-\infty}^{+\infty}\D x\, \psi(x)\ket{x},\] \[\ket{\psi} = \hat{I}\ket{\psi} = \int_{-\infty}^{+\infty}\D x\, \ket{x}\braket{x}{\psi} = \int_{-\infty}^{+\infty}\D x\, \psi(x)\ket{x},\]
 where the function $\psi(x)$ is known as the (position space) //**wavefunction**// in quantum mechanics. where the function $\psi(x)$ is known as the (position space) //**wavefunction**// in quantum mechanics.
-p+
 Similarly, in three-dimensions we have Similarly, in three-dimensions we have
 \[\ket{\psi} = \hat{I}\ket{\psi} = \int_{\mathbb{R}^3} \D^3 \vec{r}\, \ket{\vec{r}}\braket{\vec{r}}{\psi} = \int_{\mathbb{R}^3}\D^3 \vec{r}\, \psi(\vec{r})\ket{\vec{r}},\] \[\ket{\psi} = \hat{I}\ket{\psi} = \int_{\mathbb{R}^3} \D^3 \vec{r}\, \ket{\vec{r}}\braket{\vec{r}}{\psi} = \int_{\mathbb{R}^3}\D^3 \vec{r}\, \psi(\vec{r})\ket{\vec{r}},\]
Line 86: Line 86:
 \[\hat{p}\ket{p} = p\ket{p}.\] \[\hat{p}\ket{p} = p\ket{p}.\]
 In three-dimensions, we introduce the three momentum operators $\hat{p}_x$, $\hat{p}_y$, $\hat{p}_z$ and the vector of operators In three-dimensions, we introduce the three momentum operators $\hat{p}_x$, $\hat{p}_y$, $\hat{p}_z$ and the vector of operators
-\[\hat{\vec{p}} = \left ( \begin{array}{c} \hat{p}_x \\ \hat{p}_y \\ \hat{p}_z \right ),\]+\[\hat{\vec{p}} = \left ( \begin{array}{c} \hat{p}_x \\ \hat{p}_y \\ \hat{p}_z \end{array}\right ),\]
 so that we can write the defining eigenvalue equations as so that we can write the defining eigenvalue equations as
 \[\hat{\vec{p}} \ket{\vec{p}} = \vec{p}\ket{\vec{p}},\] \[\hat{\vec{p}} \ket{\vec{p}} = \vec{p}\ket{\vec{p}},\]
 where where
-\[\vec{p} = \left ( \begin{array}{c} p_x \\ p_y \\ p_z \right ).\]+\[\vec{p} = \left ( \begin{array}{c} p_x \\ p_y \\ p_z \end{array} \right ).\]
  
 The momentum basis states satisfy the orthonormality and completeness relations: The momentum basis states satisfy the orthonormality and completeness relations:
Line 100: Line 100:
 \[\ket{\psi} = \hat{I}\ket{\psi} = \int_{-\infty}^{+\infty}\D p\, \ket{p}\braket{p}{\psi} = \int_{-\infty}^{+\infty}\D p\, \Psi(p)\ket{p},\] \[\ket{\psi} = \hat{I}\ket{\psi} = \int_{-\infty}^{+\infty}\D p\, \ket{p}\braket{p}{\psi} = \int_{-\infty}^{+\infty}\D p\, \Psi(p)\ket{p},\]
 or, in three dimensions, or, in three dimensions,
-\[\ket{\psi} = \hat{I}\ket{\psi} = \int_{\mathbb{R}^3} \D^3 \vec{p}\, \ket{\vec{p}}\braket{\vec{p}}{\psi} = \int_{\mathbb{R}^3}\D^3 \vec{p}\, \psi(\vec{p})\ket{\vec{p}},\]+\[\ket{\psi} = \hat{I}\ket{\psi} = \int_{\mathbb{R}^3} \D^3 \vec{p}\, \ket{\vec{p}}\braket{\vec{p}}{\Psi} = \int_{\mathbb{R}^3}\D^3 \vec{p}\, \psi(\vec{p})\ket{\vec{p}},\]
 where $\Psi(p) = \braket{p}{\psi}$ and $\Psi(\vec{p}) = \braket{\vec{p}}{\psi}$ are called the //**momentum space wavefunction**//. where $\Psi(p) = \braket{p}{\psi}$ and $\Psi(\vec{p}) = \braket{\vec{p}}{\psi}$ are called the //**momentum space wavefunction**//.
  
Line 115: Line 115:
 ====== 2.vi.3 Connecting the Position and Momentum Representations ====== ====== 2.vi.3 Connecting the Position and Momentum Representations ======
  
-The position and momentum bases are different bases for the same Hilbert space, so there must be a way of converting between the position and momentum bases.  The Broglie and Planck hypotheses provide the connection.  They say that the position wavefunction of a state of definite momentum is a plane wave with wave vector $\vec{k} = \vec{p}/\hbar$ and angular frequency $\omega = E/\hbar$, $\psi(x,t) \propto e^{ikx - \omega t}$.  Consider the situation at $t=0$ so that $\psi(x) = \psi(x,0) \propto e^{ikx}$.  By the de Broglie hypothesis we can write $\psi(x) e^{ipx/\hbar}$, so a definite momentum state can be written in the position basis as+The position and momentum bases are different bases for the same Hilbert space, so there must be a way of converting between the position and momentum bases.  The Broglie and Planck hypotheses provide the connection.  They say that the position wavefunction of a state of definite momentum is a plane wave with wave vector $\vec{k} = \vec{p}/\hbar$ and angular frequency $\omega = E/\hbar$, $\psi(x,t) \propto e^{ikx - \omega t}$.  Consider the situation at $t=0$ so that $\psi(x) = \psi(x,0) \propto e^{ikx}$.  By the de Broglie hypothesis we can write $\psi(x) \propto e^{ipx/\hbar}$, so a definite momentum state can be written in the position basis as
 \[\ket{p} = A\int_{-\infty}^{+\infty}\D x\,e^{ipx/\hbar}\ket{x}.\] \[\ket{p} = A\int_{-\infty}^{+\infty}\D x\,e^{ipx/\hbar}\ket{x}.\]
 In an in class activity, you will determine that the normalization constant is $A = \frac{1}{\sqrt{2\pi\hbar}}$, so In an in class activity, you will determine that the normalization constant is $A = \frac{1}{\sqrt{2\pi\hbar}}$, so
Line 126: Line 126:
 \end{align*} \end{align*}
 This is so important that I will put it in a box. This is so important that I will put it in a box.
-\[\boxed{\braket{x}{p} = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx}}\]+\[\boxed{\braket{x}{p} = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx}}\]
  
-To generalize this to three dimensions, not that the general form of a plane wave at time $t=0$ in three dimensions is $\psi(x) \propto e^{i\vec{k}\cdot\vec{r}} = e^{i\vec{p}\cdot\vec{r}/\hbar}$.  The normalization constant is $\left ( 2\pi\hbar\right )^{-3/2}$ and then the decomposition +To generalize this to three dimensions, note that the general form of a plane wave at time $t=0$ in three dimensions is $\psi(x) \propto e^{i\vec{k}\cdot\vec{r}} = e^{i\vec{p}\cdot\vec{r}/\hbar}$.  The normalization constant is $\left ( 2\pi\hbar\right )^{-3/2}$ and then the decomposition 
-\[\ket{\vec{p}} = \frac{1}{\left ( 2\pi\hbar\right )^{3/2}}\int_{\mathbb{R}^3}\D^3 \vec{r}  e^{i\vec{p}\cdot\vec{r}/\hbar} \ket{\vec{r}},\]+\[\ket{\vec{p}} = \frac{1}{\left ( 2\pi\hbar\right )^{3/2}}\int_{\mathbb{R}^3}\D^3 \vec{r} \, e^{i\vec{p}\cdot\vec{r}/\hbar} \ket{\vec{r}},\]
 yields yields
-\[\boxed{\braket{\vec{r}}{\vec{p}}} = \frac{1}{\left ( 2\pi\hbar \right )^{3/2} e^{i\vec{p}\cdot\vec{r}}.}\]+\[\boxed{\braket{\vec{r}}{\vec{p}} = \frac{1}{\left ( 2\pi\hbar \right )^{3/2}} e^{i\vec{p}\cdot\vec{r}}.}\]
  
 These inner products allow us to convert between the two different basis representations via These inner products allow us to convert between the two different basis representations via
 +\begin{align*}
 +  \psi(x) & = \braket{x}{\psi}  \\
 +  & = \sand{x}{\hat{I}}{\psi} \\
 +  & = \int_{-\infty}^{+\infty} \D p\, \braket{x}{p}\braket{p}{\psi} \\
 +  & = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D p\, e^{ipx/\hbar} \Psi(p).
 +\end{align*}
 +In other words, the position space wavefunction is the inverse Fourier transform of the momentum space wavefunction.
 +\[\boxed{\psi(x) =\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D p\, e^{ipx/\hbar} \Psi(p)}.\]
 +In three dimensions, we will have
 +\[\boxed{\psi(\vec{r}) =\frac{1}{\left ( 2\pi\hbar \right )^{3/2}} \int_{\mathbb{R}^3} \D^3 \vec{p}\, e^{i\vec{p}\cdot \vec{r}/\hbar} \Psi(\vec{p})}.\]
 +Similarly, the momentum space wavefunction is given by
 +\begin{align*}
 +  \Psi(p) & = \braket{p}{\psi}  \\
 +  & = \sand{p}{\hat{I}}{\psi} \\
 +  & = \int_{-\infty}^{+\infty} \D x\, \braket{p}{x}\braket{x}{\psi} \\
 +  & = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D x\, e^{-ipx/\hbar} \psi(x),
 +\end{align*}
 +which is the Fourier transform of the position space wavefunction.
 +\[\boxed{\Psi(p) =\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D x\, e^{-ipx/\hbar} \psi(x)},\]
 +and in three dimensions this will be
 +\[\boxed{\Psi(\vec{p}) =\frac{1}{\left ( 2\pi\hbar \right )^{3/2}} \int_{\mathbb{R}^3} \D^3 \vec{r}\, e^{-i\vec{p}\cdot \vec{r}/\hbar} \psi(\vec{r})}.\]
 +
 +====== 2.vi.4 The Momentum Operator in the Position Basis ======
 +
 +We know that, in the momentum basis $\hat{p} \ket{p} = p \ket{p}$, so the matrix elements of the momentum operator in the momentum basis are $\sand{p}{\hat{p}}{p'} = p \delta(p-p')$.  This allows us to compute the action of $\hat{p}$ on any ket $\ket{\psi}$ by working in the momentum basis.  If $\ket{\psi'} = \hat{p} \ket{\psi}$ then
 +\begin{align*}
 +\Psi'(p) & = \braket{p}{\psi'} \\
 +& = \sand{p}{\hat{p}}{\psi} \\
 +& = \sand{p}{\hat{p}\hat{I}}{\psi} \\
 +& = \int_{-\infty}^{+\infty} \D p' \, \sand{p}{\hat{p}}{p'}\braket{p'}{\psi} \\
 +& = \int_{-\infty}^{+\infty} \D p' \, p\delta(p-p')\Psi(p') \\
 +& = p\Psi(p).
 +\end{align*}
 +In other words, we just multiply the momentum space wavefunction by $p$.
 +
 +However, what if we want to know how $\hat{p}$ acts on the position space wavefunction $\psi(x)$.  Recall, that the operator $\hat{\frac{\D}{\D x}}$ is defined through its action in the position basis via 
 +\[\hat{\frac{\D}{\D x}}\ket{\psi} = \int_{-\infty}^{+\infty} \D x\, \frac{\D \psi}{\D x} \ket{x}\]
 +We can start by noticing that
 +\[\frac{\D}{\D x} \left ( e^{ipx/\hbar} \right ) = \frac{ip}{\hbar}e^{ipx/\hbar},\]
 +so that
 +\[-i\hbar \frac{\D}{\D x} \left ( e^{ipx/\hbar} \right ) = p e^{ipx/\hbar}.\]
 +Therefore, since we want $\hat{p}\ket{p} = p\ket{p}$ and we know that
 +\[\ket{p} = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \D p\,e^{ipx/\hbar} \ket{x},\]
 +we have
 +\[\hat{p}\ket{p} = -\i\hbar \hat{\frac{\D}{\D x}} \ket{p}.\]
 +However, since $\ket{p}$ is a complete orthonormal basis, this implies that
 +\[\boxed{\hat{p}} = -i\hbar \hat{\frac{\D}{\D x}},\]
 +which means that, if $\ket{\psi'} = \hat{p}\ket{\psi}$ then
 +\begin{align}
 +\psi'(x) &  = \sand{x}{\hat{p}}{\psi} \\
 +& = -i\hbar \sand{x}{\hat{\frac{\D}{\D x}}}{\psi} \\
 +& = -i\hbar \int_{-\infty}^{+\infty} \D x'\, \frac{\D \psi}{\D x} \braket{x}{x' \\
 +& = -i\hbar \int_{-\infty}^{+\infty} \D x'\, \frac{\D \psi}{\D x} \delta(x-x') \\
 +& = -i\hbar \frac{\D \psi}{\D x},
 +\end{align}
 +i.e. we act with -i\hbar \frac{\D}{\D x} on the position space wavefunction $\psi(x)$.
 +
 +Note that it is common to use the sloppy notation
 +\[\hat{p} \psi(x) = -i\hbar \frac{\D \psi}{\D x},\]
 +which really means
 +\[\sand{x}{\hat{p}}{\psi} = -i\hbar \frac{\D \braket{x}{\psi}}{\D x},\]
 +but this causes no confusion in situations where we are //only// working in the position basis, which is often the case.
 +
 +In three dimensions, we will have the generalization
 +\[\boxed{\hat{\vec{p}} = -i\hbar \hat{\vec{\nabla}}},\]
 +where
 +\[\vec{\nabla} = \left ( \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right ).\]
 +
 +====== 2.vi. 5 The Hamiltonian Operator in the Position Basis ======
 +
 +